1. Trong mp (α ) cho tam giác ABC . Một điểm S không thuộc (α ) . Trên cạnh AB lấy một điểm P
và trên các đoạn thẳng SA, SB ta lấy lần lượt hai điểm M, N sao cho MN không song song với AB .
M
a. Tìm giao điểm của đường thẳng MN với mặt phẳng (SPC )
b. Tìm giao điểm của đường thẳng MN với mặt phẳng (α )
E
Giải
a. Tìm giao điểm của đường thẳng MN với mặt phẳng (SPC )
N
Cách 1 : Trong (SAB) , gọi E = SP ∩ MN
• E ∈ SP mà SP ⊂ (SPC) ⇒ E ∈(SPC)
C
A
• E ∈ MN
Vậy : E = MN ∩ (SPC )
Cách 2 : • Chọn mp phụ (SAB) ⊃ MN
• ( SAB) ∩ (SPC ) = SP
• Trong (SAB), gọi E = MN ∩ SP
E ∈ MN
E ∈ SP mà SP ⊂ (SPC)
Vậy : E = MN ∩ (SPC )
b. Tìm giao điểm của đường thẳng MN với mp (α)
Cách 1: Trong (SAB) , MN không song song với AB
Gọi D = AB ∩ MN
• D ∈ AB mà AB ⊂ (α) ⇒ D ∈(α)
• D ∈ MN
Vậy: D = MN ∩ (α)
• ( SAB) ∩ (α) = AB
• Trong (SAB) , MN không song song với AB
Gọi D = MN ∩ AB
D ∈ AB mà AB ⊂ (α) ⇒ D ∈(α)
S
D ∈ MN
Vậy : D = MN ∩ (α)
Bạn đang xem 1. - BT HINH HOC KG 11 DAP AN