Câu 39 : Tìm giá trị thực của tham số m để phương trình log 2 3 x m log 3 x 2 m 7 0 có hai
nghiệm thực x x 1 , 2 thỏa mãn x x 1 2 81
A. m 4 . B. m 4 . C. m 81 . D. m 44 .
Giải
2
log x m log x 2 m 7 0 1
3 3
Điều kiện : x 0
Đặt t log , 3 x t , phương trình 1 tương đương với t 2 mt 2 m 7 0 2 . Phương trình 1
có hai nghiệm thực x x x 1 , 2 1 0, x 2 0 Phương trình 2 có hai nghiệm thực t t 1 2 , phân biệt
2
2 4 2 7 0 2 8 28 0 4 12 0,
m m m m m m
.
Ta có t t 1 2 log 3 1 x log 3 2 x log 3 1 2 x x log 81 4 3 m 4 ( Định lý Vi – et )
Đáp án : B
Bạn đang xem câu 39 : - giải chi tiết