8. Cho tứ diện ABCD .Gọi M,N lần lượt là
M
D
trung điểm AC và BC . K là điểm trên BD và
K
không trùng với trung điểm BD .
B
a. Tìm giao điểm của CD và (MNK )
b. Tìm giao điểm của AD và (MNK )
N
Giải
C
a. Tìm giao điểm của CD và (MNK ) :
• Chọn mp phụ (BCD) ⊃ SC
I
• Tìm giao tuyến của ( BCD ) và (MNK)
Ta có N ∈ (MNK)
N ∈ BC mà BC ⊂ (BCD) ⇒ N ∈ (BCD)
⇒ N là điểm chung của (BCD ) và (MNK)
K ∈ (MNK)
K ∈ BD mà BD ⊂ (BCD) ⇒ K ∈ (BCD)
⇒ K là điểm chung của (BCD ) và (MNK)
⇒ (BCD) ∩ (MNK) = NK
• Trong (BCD), gọi I = CD ∩ NK
I∈ CD
I∈ NK mà NK ⊂ (MNK) ⇒ I ∈ (MNK)
Vậy: I = CD ∩ (MNK)
b. Tìm giao điểm của AD và (MNK )
• Chọn mp phụ (ACD) ⊃ AD
• Tìm giao tuyến của (ACD ) và (MNK)
Ta có: M ∈ (MNK)
M ∈ AC mà AC ⊂ (ACD) ⇒ M ∈ (ACD)
⇒ M là điểm chung của (ACD ) và (MNK)
I∈ NK mà NK ⊂ (MNK) ⇒ I ∈ (MNK)
I ∈ CD mà CD ⊂ (ACD) ⇒ I ∈ (ACD)
⇒ I là điểm chung của (ACD ) và (MNK)
⇒ (ACD) ∩ (MNK) = MI
• Trong (BCD), gọi J = AD ∩ MI
J∈ AD
J∈ MI mà MI ⊂ (MNK) ⇒ J ∈ (MNK)
Vậy: J = AD ∩ (MNK)
Bạn đang xem 8. - BT HINH HOC KG 11 DAP AN