TÌM M ĐỂ HAI ĐƯỜNG THẲNG CẮT NHAU VÀ TÌM QUỸ TÍCH GIAO ĐI...
Bài 1: Tìm m để hai đường thẳng cắt nhau và tìm quỹ tích giao điểm của hai đường thẳng đó d
1
: mx+2y=m+1 d2
: 2x+my= 2m-1. Hai đường thẳng cắt nhau khi:𝑚
2
≠𝑚
2
m ≠ ± 2. Thay y=𝑚 +1−𝑚𝑥
2
từ d1
vào d2
ta tìm được x =𝑚−1
𝑚+2
suy ra y=2𝑚+1
𝑚+2
Vậy giao điểm của hai đường thẳng là A(𝑚−1
𝑚+2
;2𝑚 +1
𝑚 +2
) Ta thấy: x =𝑚−1
𝑚+2
= 1 −𝑚+2
3
; y=2𝑚 +1
𝑚 +2
= 2 −𝑚+2
3
suy ra x-y=-1. Vậy quỹ tích giao điểm của hai đường thẳng nằm trên đường thẳng x-y= -1 Dạng 8: Các dạng lập phương trình đường thẳng a) Lập phương trình đường thẳng đi qua 2 điểm A(𝒙𝟏
, 𝒚𝟏
); B(𝒙𝟐
, 𝒚𝟐
) Phương pháp: Cách 1: (nâng cao) Phương trình đường thẳng là:𝑥−𝒙
𝟏
𝒙
𝟐
−𝒙
𝟏
=𝑦−𝒚
𝟏
𝒚
𝟐
−𝒚
𝟏
Cách 2: giả sử phương trình đường thẳng là y=a.x+b (1) - Thay tọa độ của A(𝑥1
, 𝑦1
); B(𝑥2
, 𝑦2
) vào (1) ta được hệ phương trình: 𝑦1
= 𝑎. 𝑥1
+ 𝑏𝑦2
= 𝑎. 𝑥2
+ 𝑏 từ hệ phương trình trên tìm được a,b thay vào (1) ta được phương trình đường thẳng.