CHO TỨ DIỆN ABCD CÓ THỂ TÍCH V. GỌI A B C D1 1 1 1 LÀ TỨ DIỆN VỚI CÁC...

Câu 45: Cho tứ diện ABCD có thể tích V. Gọi A B C D

1

1

1

1

là tứ diện với các đỉnh lần lượt là trọng tâm tam giác BCD, CDA, DAB, ABC và có thể tích V

1

. Gọi A B C D

2

2

2

2

là tứ diện với các đỉnh lần lượt là trọng tâm tam giác B C D

1

1

1

, C D A

1

1

1

, D A B

1

1

1

, A B C

1

1

1

và có thể tích V

2

,… cứ như vậy cho đến tứ diện A B C D

n

n

n

n

có     . thể tích V

n

với n là một số tự nhiên lớn hơn 1. Tính giá trị của lim (

1

...

n

)P V V V



n

A. 27 .26V B. 1 .8V D. 82 .81V27V C. 9 .

2

x x x3 2 3  

4

2

3

      y y x x y x x y; 3 2; 3 ;