PROVE THATZ 1Z 1DX DYX −1 + | LN Y| − 1 ≤ 1. [20 POINTS]00SOLUTION...

5. Prove that

Z 1

dx dy

x −1 + | ln y| − 1 ≤ 1. [20 points]

0

Solution 1. First we use the inequality

x −1 − 1 ≥ | ln x|, x ∈ (0, 1],

which follows from

(x −1 − 1)

x=1 = | ln x|| x=1 = 0,

(x −1 − 1) 0 = − 1

x 2 ≤ − 1

x = | ln x| 0 , x ∈ (0, 1].

Therefore

| ln x| + | ln y| =

| ln(x · y)| .

x −1 + | ln y| − 1 ≤

Substituting y = u/x, we obtain

du

dx

| ln u| · du

| ln(x · y)| =

| ln u| = 1.

| ln u| =

x

u

Solution 2. Substituting s = x −1 − 1 and u = s − ln y,

e −u

Z u

Z ∞

e s

e s−u

u dsdu.

(s + 1) 2 ds

(s + 1) 2 u duds =

x −1 + | ln y| − 1 =

s

Since the function (s+1) e

s 2

is convex,

e u

(u + 1) 2 + 1

2

(s + 1) 2 ds ≤ u

so

u

du

e −u du

= 1.

u du = 1

(u + 1) 2 +