LÀ TÊN MỘT NHÀ TOÁN HỌC ĐỨC ). NGUYÊN TẮC ĐIRICHLÊ THƯỜNG ĐƯỢC P...

1895) là tên một nhà Toán học Đức ). Nguyên tắc Đirichlê thường được phát

biểu dưới dạng “hài hước” như sau : “Không thể nhốt 7 chú thỏ vào ba cái lồng,

sao cho trong mỗi lồng không có quả 2 chú thỏ” ( nghĩa là, phải có một cái lồng

có ít nhất 3 chú thỏ ).

Ta vận dụng nguyên tắc Đirichlê để giải bài tập, trong đó cần xác lập sự tương

ứng giữa các đối tượng của hai nhóm mà số lượng hữu hạn các đối tượng của

hai nhóm này không bằng nhau.

Ví dụ 1. Tổ của Dương phải trực nhật suốt cả 5 ngày học trong tuần. Tổ có 11

bạn, bạn nào cũng phải làm trực nhật. Chứng tỏ rằng có một ngày ít nhất 3 bạn

trực nhật.

Phân tích. Trước hết, hãy xem xét có thể không phân công được 3 bạn trực nhật

một ngày hay không. Ta sắp xếp 11 bạn ( có vai trò như các con thỏ ) vào 5

nhóm ( như các lồng ) mỗi nhóm trực nhật mỗi ngày. Trước hết ta bố trí 5 bạn

vào 5 nhóm, còn lại 6 bạn. Sau đó lại sắp xếp tiếp 5 bạn nữa vào 5 nhóm này,

như vậy mỗi nhóm có 2 bạn và còn lại 1 bạn. Bạn cuối cùng này ta phân công

vào 1 trong 5 nhóm ấy, vì bạn nào cũng phải tham gia trực nhật. Như vậy, nhóm

có bạn cuối cùng này sẽ có 3 bạn, tức là có một nhóm ít nhất 3 bạn trực nhật .

Theo cách phân công như nói trên thì có một ngày có đúng 3 bạn trực nhật,

nhưng ở đầu bài lại đặt ra “có một ngày ít nhất 3 bạn trực nhật”. Điều đó được

giải thích như sau. Trước hết, về mặt lôgic, nhóm “có 3 bạn” mà ta nói “có ít

nhất 3 bạn” là đúng.

Mặt khác, về ý nghĩa thực tế có thể có nhiều cách phân công trực nhật. Chẳng

hạn có thể phân công một cách không hợp lí như sau : trong 4 ngày học đầu,

phân công mỗi ngày một bạn, còn lại 7 bạn ta phân công cả vào ngày cuối cùng.

Thế thì rõ rằng trong ngày cuối cùng có ít nhất 3 bạn trực nhật. Như vậy dù có

đúng 3 bạn, hoặc có nhiều hơn 3 bạn làm trực nhật, khả năng phân công “công

bằng” nhất, như trình bày ở phần đầu, thì sẽ có ngày đúng 3 bạn trực nhật.

Giải

Ta sắp xếp 11 bạn vào 5 nhóm, mỗi nhóm trực nhật một ngày. Vì 2 x 5 = 10 <

11 nên, theo nguyên tắc Đirichlê phả có một nhóm có ít nhất 3 bạn trực nhật

Ví dụ 2. Trường em có 380 học sinh. Chứng minh rằng có ít nhất 2 bạn cùng một

ngày sinh.

Phân tích. Một năm thường có 365 ngày, năm nhuận có 366 ngày. Giả sử 366

bạn có ngày sinh từ ngày 1 tháng 1 đến 31 tháng 12. Số còn lại là :

380 – 366 = 14 ( học sinh )

Số học sinh này cũng phải có ngày sinh là một ngày nào đó trong năm. Do đó,

chắc chắn có ít nhất 2 bạn cùng một ngày sinh. Ở đây ta nói ít nhất, bởi vì ta giả

sử 366 bạn có ngày sinh rải từ ngày 1-1 đến 31-12, trên thực tế có thể có 2 bạn

hoặc nhiều hơn 2 bạn có cùng một ngày sinh.

Một năm có 365 hoặc 366 ngày. Với 380 học sinh có 380 ngày sinh, ta sắp xếp

380 ngày sinh vào các ngày trong năm. Vì 380 > 366 nên, theo nguyên tắc

Đirichlê, chắc chắn có ít nhất 2 bạn có cùng một ngày sinh.

Ví dụ 3. Chứng minh rằng trong 3 số tự nhiên bất kỳ, bao giờ cũng có thể tìm

được 2 số sao cho tổng của chúng chia hết cho 2.

Phân tích. Các số tự nhiên 0, 1, 2, 3,.. chỉ gồm có các số chẵn 0, 2, 4,… và các

số lẻ 1, 3, 5,…. Vì thế khi có 3 số tự nhiên bất kì thì phải hoặc là trong đó có 2

số chẵn, hoặc là 2 số lẻ. Trong trường hợp thứ nhất, hai số chẵn có tổng là một

số chẵn nên tổng này chia hết cho 2 như vậy, hai số chẵn này là hai số phải tìm.

Còn trong trường hợp thứ hai, hai số lẻ bao giờ cũng có tổng là một số chẵn nên

tổng này cũng chia hết cho 2, do đó hai số lể này là hai số phải tìm. Ở đây

nguyên tắc Đirichlê được ứng dụng ở chỗ ta có ba số tự nhiên mà chỉ có hai loại

số là số chẵn và số lẻ nên trong ba số đó bao giờ cũng có hai số hoặc cùng chẵn

hoặc cùng lẻ.

Số tự nhiên gồm có chẵn và số lẻ, nên trong 3 số tự nhiên bất kì theo nguyên

tắc Đirichlê bao giờ cũng có hai số chẵn hoặc hai số lẻ. Tổng của hai số này luôn

luôn là số chẵn nên chia hết cho 2.

Bài tập