CHO HÀM SỐ 32 2 KHI 1( ) 2 1 KHI 1.F X X XMÃN G X  LÀ HÀM SỐ CHẴN, H...

Câu 41:

Cho hàm số

3

2

2 khi 1( ) 2 1 khi 1.f x x x

mãn

g x

 

là hàm số chẵn,

h x

 

là hàm số lẻ đồng thời

g x h x

     

f x x, 

. Khi đĩ giá

trị

2

 

d

g x x

1

bằng

A.

65

24

B.

53

3

6

D.

17

24

C.

17

Lời giải

Xét giả thiết

g x h x

     

f x x, 

 

1

suy ra

g x h x

     

      f x x,

     

 

hay g x h x    f x x, 2

.( do

g x

 

là hàm số chẵn,

h x

 

là hàm số lẻ)

Từ

   

1 & 2

g x

     

f x

 

2

f x

h x

     

f x f x

 

2

. Thử lại

g x

 

,

h x

 

thỏa mãn.

1

1

1

1

    

Khi đĩ

2

 

2

 

2

 

2

3

1

   

g x x

f x x

f x x

x

x x

f x

x

d

d

d

2 d

d

2

2

2

2

1

1

1

1

2

1

1

1

3 1

d

3 1

2

1 d

1

-2 d

53

.

     

 

 

2

3

8 2

f t t

8 2

t

t

2

t t t

24

2

2

1

Chọn B