Câu 49. Một cái hộp có dạng hình hộp chữ nhật có thể tích bằng 48 và chiều dài gấp đôi chiều
rộng. Chất liệu làm đáy và 4 mặt bên của hộp có giá thành gấp ba lần giá thành của chất liệu
làm nắp hộp. Gọi h là chiều cao của hộp để giá thành của hộp là thấp nhất. Biết h = m
n với m ,
n là các số nguyên dương nguyên tố cùng nhau. Tổng m + n là
A 12 . B 13 . C 11 . D 10 .
Lời giải.
Giả sử chiều dài, chiều rộng của hộp là 2x và x ; giá thành làm đáy và mặt bên hộp là 3 , giá
thành làm nắp hộp là 1 . Theo giả thiết ta có
2x 2 h = V hộp = 48 ⇒ x 2 h = 24.
Đoàn Ngọc Lê - Giáo viên Trường THPT Ninh Bình - Bạc Liêu - Thành phố Ninh Bình
Giá thành làm hộp là
√
3(2x 2 + 2xh + 4xh) + 2x 2 = 8x 2 + 9xh + 9xh ≥ 3
38 · 9 2 · x 4 h 2 = 216.
x = 9h
x = 3
( 8x 2 = 9xh
8
⇒
Dấu bằng xảy ra khi
9 2x 2 h = 24 ⇒
h = 8
3 .
8 2 · h 3 = 24
Vậy m = 8 , n = 3 và m + n = 11 .
Bạn đang xem câu 49. - Đề thi thử Toán THPT Quốc gia 2019 lần 1 sở GD&ĐT Ninh Bình -