CHO KHỐI LĂNG TRỤ TAM GIÁC ĐỀU ABC A B C. CÓ CHIỀU CAO B...
Câu 42. Cho khối lăng trụ tam giác đều ABC A B C. có chiều cao bằng a 3 và hai đường thẳng AB, BC vuông góc với nhau. Tính theo a thể tích V của khối lăng trụ ABC A B C. . 9
3
53
V a . C. V a3
. D. V a . A. V 6a3
. B. 2Lời giải Gọi M, I lần lượt là trung điểm của các cạnh AC, BC. Ta có MI//AB nên
AB BC,
MI BC,
MIB90. Mà ABBC suy ra BIM vuông cân tại I . Đặt ABx,
x0
. Ta có 1 1 12
2
2
2
2 2 2 3IM AB AB BB x a .
2
2
2
2
12
2
2 3BM IB IM IM 2 x a
1 .2
2
x x2
2
2
2
3ABM vuông tại M nên BM AB AM x
2 . 4 4Từ
1 và
2 suy ra 12
x2
3a2
34x2
x2
6a2
. 3 3 3x aS
.ABC
4 2Chọn D2
3
3 3 9a a. . 3V S
AA a . Vậy thể tích khối lăng trụ ABC A B C. là 2 2